

Tetrahedron 56 (2000) 377-380

TETRAHEDRON

New Synthesis of 1*H*-[1,2,4]Triazolo[3,4-*a*]isoindoles by Intramolecular Condensation of 1-Substituted-1,2,4-triazol-4-ium Methylides

Patrice Woisel,* Marie-Line Lehaire and Gheorghe Surpateanu

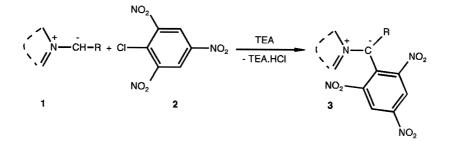
Laboratoire de Synthèse Organique et Environnement, EA: 2599, MREID 145, Rue Maurice Schumann, 59140 Dunkerque, France

Received 10 March 1999; accepted 15 November 1999

Abstract—In this paper we report the first approach of synthesis of 1H-[1,2,4]triazolo[3,4-a]isoindoles in moderate to good yields by intramolecular annulation of 1-substituted-1,2,4-triazol-4-ium methylides. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

Fused heterocycles including a triazole ring have become of interest to synthetic chemists and biologists because of their unusual structures and wide range of biological and medicinal properties.¹ Among this class of compounds, the triazoloindole derivatives have received increasing attention in past years as witnessed by the recent articles and patents dealing with their synthesis and emphasising their pharmaceutical and medicinal activities.²

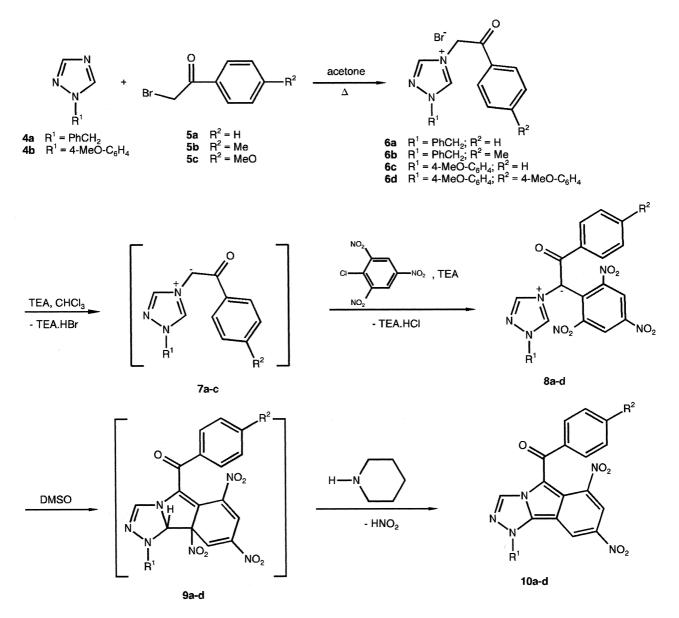

In previous work, monosubstituted cycloimmonium ylides 1 have been identified by condensation with picryl chloride 2 giving the corresponding disubstituted cycloimmonium ylides 3 (Scheme 1).³⁻⁶

In this paper, we report, for the first time, the synthesis of 1H-[1,2,4]triazolo[3,4-*a*]isoindoles by intramolecular cyclisation of 1-substituted-1H-[1,2,4]triazol-4-iumbenzoyl-2,4,6-trinitrophenylmethylides (Scheme 2).

Results and Discussion

Initially, the required 1-benzyl-1*H*-[1,2,4]triazole **4a** was obtained from the commercially available 1*H*-[1,2,4]-triazole via the corresponding anion and benzyl bromide.⁷ The 1-(4-methoxyphenyl)-1*H*-[1,2,4] triazole **4b** was swiftly synthesised by deprotonation of the 4-[1,2,4]-triazol-1-yl phenol with KOH pellets followed by addition of iodomethane.

The "salt method"⁷ has been applied in order to obtain the triazol-4-ium ylides 8. Thus, the 1-substituted-1H-[1,2,4]-triazoles $4\mathbf{a}-\mathbf{b}$ treated with 4-substituted ω -bromo-acetophenones $5\mathbf{a}-\mathbf{b}$ in dry boiling acetone furnish, after recrystallisation (ethanol), the corresponding salts $6\mathbf{a}-\mathbf{d}$, in good yields (Table 1). Next these salts in the presence of triethylamine (TEA) form 'in situ' the monosubstituted carbanions ylides 7 which, with picryl chloride in excess of TEA offer directly the [1,2,4]-triazol-4-ium trinitrophenylmethylides $8\mathbf{a}-\mathbf{d}$. After purification these disubstituted



Scheme 1.

Keywords: ylids; annulation; isoindoles.

^{*} Corresponding author. Fax: +33-28-65-82-54; e-mail: surparmn@univ-littoral.fr

^{0040–4020/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(99)01006-6

Scheme 2.

 Table 1. [1,2,4]-Triazol-4-ium salts 6a-d, [1,2,4]-triazol-4-ium disubstituted methylides 8a-d and isoindoles 10a-d prepared

Compound	\mathbb{R}^1	\mathbb{R}^2	Yield ^a (%)
6a	PhCH ₂	Н	60
6b	$PhCH_2$	CH ₃	75
6c	4-MeO-C ₆ H ₄	Н	59
6d	4-MeO-C ₆ H ₄	4-MeO-C ₆ H ₄	65
8a	PhCH ₂	Н	68
8b	$PhCH_2$	CH ₃	62
8c	4-MeO-C ₆ H ₄	Н	77
8d	4-MeO-C ₆ H ₄	4-MeO-C ₆ H ₄	75
10a	PhCH ₂	Н	76
10b	PhCH ₂	CH_3	75
10c	4-MeO-C ₆ H ₄	Н	67
10d	4-MeO-C ₆ H ₄	$4-\text{MeO-C}_6\text{H}_4$	72

^a Yields are given for purified products.

carbanion ylides have been isolated in fairly good yields (Table 1). However, this reaction must be carried out under 10°C and without light⁸ in order to prevent cleavage of the C^--N^+ bond. The [1,2,4]-triazol-4-ium disubstituted methylides 8, dissolved in dimethylsulfoxide (DMSO) in the presence of piperidine at room temperature are converted to 1H-[1,2,4]triazolo[3,4-a]isoindoles 10a-d, indicated by the disappearance of the initial deep purple colour corresponding to ylides 8 during the experiments and the disappearance of the signals near 8 ppm in ¹H NMR data assigned to the proton in the five position in the triazole ring. Nevertheless, in order to explain the formation of the final structures 10, an intermediate adduct of the type 9 may be envisaged and the relatively good yields (Table 1) of these transformations could be explained only by the existence of a high degree of conjugation in the final compounds 10.

Conclusion

The ylides **7** and **8** represent a new class of intermediates which could be used in the synthesis of isoindoles derivatives. The extension of the established strategy to the synthesis of other fused heterocycles is under active investigation.

Experimental

¹H and ¹³C NMR spectra were recorded on a Brüker AM 250 spectrometer with tetramethylsilane as internal standard. Chemical shifts are expressed in ppm. The abbreviations are: s (singlet), d (doublet), t (triplet) and m (multiplet). Mass spectra were taken on a Platform II Micromass apparatus. For column chromatography SDS silica gel 60 (70–200 μ m) was used. Chloroform and acetone were freshly distilled over CaH₂ and K₂CO₃, respectively. Dry glassware for moisture-sensitive reactions was obtained by oven-drying and assembly under Ar. An inert atmosphere was obtained with a stream of Ar and glassware used in experiments was performed by syringe techniques.

Compound **4a** was prepared following the reported experimental procedure.⁷

1-(4-Methoxy-phenyl)-1*H***-[1,2,4]triazole 4b.** A suspension of 4-[1,2,4]triazo-1-yl phenol (4.4 g, 0.3 mmol), KOH (2.2 g, 0.4 mmol) and CH₃I (2.8 mL, 0.4 mmol) in EtOH (200 mL) was refluxed under Ar for 12 h. The mixture was filtered and evaporated to give a crude solid which was treated with water and extracted twice with CH₂Cl₂ (2×100 mL). The organic layer was made alkaline by the addition of 10% aqueous KOH, dried on MgSO₄ and evaporated in vacuum to afford colourless crystals. (Rdt=86%). ¹H- and ¹³C NMR spectra of this compound were consistent with literature data.⁹

General procedure for the synthesis of 1-substituted-1*H*-[1,2,4]triazol-4-ium bromide 6a–d. The ω -bromoacetophenone compounds 5a–c are commercially available. A solution of ω -bromoacetophenone derived 5a–c (1 mmol) in anhydrous acetone (30 mL) was added under Ar at room temperature to a solution of 1-substituted-1*H*-[1,2,4] triazol 4a and b (1 mmol) in anhydrous acetone (80 mL). The solution was warmed to reflux for 8 h. The crude precipitated product was filtered and finally recrystallised in EtOH.

1-Benzyl-4-phenacyl-1H-[1,2,4]triazol-4-ium bromide 6a. Mp 175–176°C; ¹H NMR (DMSO- d_6 , δ , J Hz): 5.77 (2H, s, NCH₂Ar), 6.14 (2H, s, CH₂CO), 7.42–7.47 (5H, m, H_{arom}), 7.61–7.66 (2H, m, H_{arom}), 7.77 (1H, dd, J=7.3 Hz, H_{arom}), 8.05 (2H, d, J=7.3 Hz, H_{arom}), 9.17 (1H, s, H_{arom}), 10.22 (1H, s, H_{arom}); ¹³C NMR (DMSO, δ): C, 190.4, 133.4, 133.3; CH, 146.1, 143.7, 134.8, 129.2, 129.0, 128.8, 128.3; CH₂, 54.8, 54.0; m/z (%): 279 (M–Br, 100), 279 (M+1–Br, 25); IR (KBr, cm⁻¹):3049, 1694, 1572, 1443, 1396, 1338, 1243, 1149, 747, 882; Anal. Calcd for $C_{17}H_{16}N_3OBr:$ C, 57.00; H, 4.50; N, 11.73; found: C, 59.12; H, 4.48; N, 11.46.

1-Benzyl-4-(4-methyl)phenacyl-1*H***-[1**,**2**,**4**]triazol-4-ium bromide 6b. Mp 155–156°C; ¹H NMR (DMSO- d_6 , δ , *J* Hz): 2.43 (3H, s, CH₃), 5.79 (2H, s, NCH₂Ar), 6.14 (2H, s, CH₂CO), 7.44–7.50 (7H, m, H_{arom}), 7.97 (2H, d, *J*=8.1 Hz, H_{arom}), 9.20 (1H, s, H_{arom}), 10.27 (1H, s, H_{arom}); ¹³C NMR (DMSO, δ): C, 189.9, 145.4, 133.3, 130.9; CH, 146.1, 143.6, 129.7, 128.9, 128.8, 128.3; CH₂, 54.8, 53.9; CH₃, 21.3; *m*/*z* (%): 292 (M–Br, 100) 293 (M+1–Br, 21); IR (KBr, cm⁻¹): 2928, 1694, 1603, 1573, 1446, 1341, 1237, 1154, 999, 731.; Anal. Calcd for C₁₈H₁₈N₃OBr: C, 58.21; H, 4.89; N, 11.32; found: C, 58.16; H, 4.67; N, 11.30.

1-(4-Methoxy-phenyl)-4-phenacyl-1*H***-[1,2,4]triazole 6c.** Mp 197–198°C; ¹H NMR (DMSO-*d*₆, δ , *J* Hz): 3.88 (3H, s, OCH₃), 6.27 (2H, s, CH₂CO), 7.26 (2H, d, *J*=8.8 Hz, H_{arom}), 7.65–7.85 (3H, m, H_{arom}), 7.91 (2H, d, *J*=9.1 Hz, H_{arom}), 8.13 (2H, d, *J*=7.3 Hz, H_{arom}), 9.43 (1H, s, H_{arom}), 10.89 (1H, s, H_{arom}); ¹³C NMR (DMSO, δ): C, 190.1, 160.7, 133.3, 128.0; CH, 146.0, 141.8, 134.9, 129.2, 128.4, 122.7, 115.3; CH₂, 55.8; CH₃, 54.0; *m*/*z* (%): 294 (M–Br, 100), 295 (M+1–Br, 14); IR (KBr, cm⁻¹): 2916, 1692, 1596, 1573, 1524, 1498, 1343, 1237, 835, 763; Anal. Calcd for C₁₇H₁₆N₃OBr: C, 53.56; H, 4.31; N, 11.23; found: C, 53.32; H, 4.47; N, 10.95.

1-(4-Methoxy-phenyl)-4-(4-methoxy)phenacyl-1H-[1,2,4]triazole 6d. Mp 205–206; ¹H NMR (DMSO- d_6 , δ, J Hz): 3.87 (3H, s, OCH₃), 3.91 (3H, s, OCH₃), 6.20 (2H, s, CH₂CO), 7.19 (2H, d, J=8.9 Hz, H_{arom}), 7.26 (2H, d, J=9.1 Hz, H_{arom}), 7.90 (2H, d, J=8.9 Hz, H_{arom}), 8.10 (2H, d, J=8.9 Hz, H_{arom}), 9.41 (1H, s, H_{arom}), 10.87 (1H, s, H_{arom}); ¹³C NMR (DMSO, δ): C, 188.2, 164.4, 160.7, 128.0, 126.1; CH, 146.0, 141.8, 130.8, 122.7, 115.3, 114.5; CH₂, 53.6; CH₃, 55.8 (×2); m/z (%): 324 (M–Br, 100); IR (KBr, cm⁻¹): 2925, 1688, 1600, 1571, 1501, 1274, 1239, 1174, 990, 836.; Anal. Calcd for C₁₇H₁₆N₃OBr: C, 54.56; H, 4.31; N, 11.23; found: C, 54.29; H, 3.96; N, 11.01.

General procedure for the synthesis of 1-substituted-1*H*-[1,2,4]triazol-4-iumbenzoyl-2,4,6-trinitrophenylmethylides 8a–d. A solution of freshly distilled Et₃N (5.6 mmol) in dry CHCl₃ (5 mL) was added at 0°C under Ar to a stirred suspension of 6 (2.8 mmol) and picryl chloride in dry CHCl₃ (30 mL). The mixture was warmed to room temperature, without light for 3 h. The solvent was evaporated and the deep purple crude product was chromotographed on SiO₂ using acetone–hexane (40/60) as eluent.

1-Benzyl-1*H*-**[1,2,4]triazol-4-iumbenzoyl-2,4,6-trinitrophenylmethylide 8a.** Mp 97–98°C; ¹H NMR (CDCl₃, δ , *J* Hz): 5.43 (2H, s, CH₂Ph), 7.17–7.33 (7H, m, H_{arom}), 7.46–7.48 (3H, m, H_{arom}), 8.16 (1H, s, H_{arom}), 8.49 (2H, s, H_{arom}), 9.45 (1H, s, H_{arom}); *m*/*z* (%): 489 (M+1, 10); 443 (M+1–NO₂, 100) IR (KBr, cm⁻¹): 3055, 1698, 1608, 1528, 1299, 1159, 1081, 721, 873.

1-Benzyl-1*H*-**[1,2,4]triazol-4-ium-4-methylbenzoyl-2,4, 6-trinitrophenylmethylide 8b.** Mp 101–102°C; ¹H NMR (CDCl₃, δ , *J* Hz): 2.29 (3H, s, CH₃), 5.40 (2H, s, CH₂Ph), 6.98 (2H, d, *J*=7.9 Hz, H_{arom}), 7.13 (2H, d, *J*=7.9 Hz, H_{arom}), 7.27–7.31 (2H, m, H_{arom}), 7.43–7.46 (3H, m, H_{arom}), 8.13 (1H, s, H_{arom}), 8.46 (2H, s, H_{arom}), 9.35 (1H, s, H_{arom}); m/z (%): 503 (M+1, 8); 457 (M+1–NO₂, 100), 365 (10); IR (KBr, cm⁻¹): 2923, 1700, 1606, 1522, 1458, 1297, 1162, 1083, 711.

1-(4-Methoxy-phenyl)-1*H*-[**1**,**2**,**4**]triazol-4-iumbenzoyl-**2**,**4**,**6**-trinitrophenylmethylide 8c. Mp 109–110; ¹H NMR (CDCl₃, δ , *J* Hz): 3.90 (3H, s, OCH₃), 7.06 (2H, d, *J*=9.1 Hz, H_{arom}), 7.22–7.37 (5H, m, H_{arom}), 7.64 (2H, d, *J*=9.1 Hz, H_{arom}), 8.29 (1H, s, H_{arom}), 8.53 (2H, s, H_{arom}), 9.91 (1H, s, H_{arom}); *m*/*z* (%): 527 (M+Na, 80), 505 (M+1, 100), 459 (M+1–NO₂, 20), 175 (25); IR (KBr, cm⁻¹): 2945, 1606, 1520, 1519, 1259, 1257, 1165, 914, 831, 716.

1-(4-Methoxy-phenyl)-1*H*-[**1**,**2**,**4**]triazol-4-ium-4-methoxybenzoyl-2,**4**,**6**-trinitrophenylmethylide 8d. Mp 99– 100°C; ¹H NMR (CDCl₃, δ , *J* Hz): 3.80 (3H, s, OCH₃), 3.89 (3H, s, OCH₃), 6.72 (2H, d, *J*=8.6 Hz, H_{arom}), 7.04 (2H, d, *J*=9.0 Hz, H_{arom}), 7.24 (2H, d, *J*=8.6 Hz, H_{arom}), 7.65 (2H, d, *J*=9.0 Hz, H_{arom}), 8.30 (1H, s, H_{arom}), 8.49 (2H, s, H_{arom}), 9.95 (1H, s, H_{arom}); *m*/*z* (%): 557 (M+Na, 50), 535 (M+1, 100), 489 (M+1–NO₂, 25), 295 (25), 175 (25); IR (KBr, cm⁻¹): 2932, 1603, 1517, 1257, 1255, 1165, 1022, 833.

General procedure for the synthesis of 1*H*-[1,2,4]triazolo[3,4-*a*]isoindoles. A solution of 8 (1.5 mmol) in DMSO (20 mL) was stirred under Ar at room temperature in the presence of piperidine (3 mmol) for 5 h without light. Initially the solution had a deep purple colour and progressively became red. The solution was acidified with 3N acetic acid solution and washed with water to afford a red precipitate which was filtered and washed in boiling EtOH.

1-Benzyl-5-benzoyl-6,8-dinitro-1*H*-**[1,2,4]triazolo[3,4-***a***]isoindoles 10a.** Mp 225–226°C; ¹H NMR (DMSO-*d*₆, δ , *J* Hz): 5.87 (2H, s, CH₂Ar), 7.38–7.56 (10H, m, H_{arom}), 8.45 (1H, s, H_{arom}), 8.79 (1H, s, H_{arom}), 9.41 (1H, s, H_{arom}); ¹³C NMR (DMSO, δ): C, 183.3, 140.7, 140.3, 138.1, 136.4, 134.4, 124.1, 107.3, 107.0; CH, 132.9, 131.8, 128.9, 128.5, 128.0, 127.1, 125.1, 121.0; CH₂, 54.1; *m/z* (%): 481 (M+CH₃CN, 30), 464 (M+Na, 80), 442 (M+1, 20), 295 (40), 91 (100), 63 (15), 36 (35); IR (KBr, cm⁻¹): 2933, 1706, 1558, 1498, 1450, 1385, 1304, 1266, 1142, 1053, 732, 700; Anal. Calcd for C₂₃H₁₅N₅O₅: C, 62.57; H, 3.43; N, 15.87; found: C, 62.06; H, 3.38; N, 15.76.

1-Benzyl-5-(4-methyl)benzoyl-6,8-dinitro-1*H***-[1,2,4]-triazolo[3,4-***a***]isoindoles 10b.** Mp 235–236°C; ¹H NMR (DMSO-*d*₆, δ , *J* Hz): 2.51 (3H, s, CH₃), 6.14 (2H, s, CH₂Ar), 7.26 (2H, d, *J*=7.8 Hz, H_{arom}), 7.37–7.50 (7H, m, H_{arom}), 8.69 (1H, s, H_{arom}), 9.18 (1H, s, H_{arom}), 9.53 (1H, s, H_{arom}); ¹³C NMR (DMSO, δ): C, 183.1, 141.9, 138.1, 138.0, 136.2, 134.4, 132.8, 123.9, 107.4, 106.8; CH, 129.4, 128.9, 128.5, 128.0, 127.3, 125.1, 121.0; CH₂, 54.1; CH₃, 21.1; *m*/*z* (%): 494 (M+K, 10), 478 (M+Na, 100), 456 (M+1, 20), 295 (30), 36 (20); IR (KBr, cm⁻¹): 2362, 1621, 1558, 1528, 1302, 1255, 1136, 1105; Anal. Calcd for C₂₄H₁₇N₅O₅: C, 63.28; H, 3.75; N, 15.38; found: C, 63.05; H, 3.56; N, 14.99.

1-(4-Methoxyphenyl)-5-benzoyl-6,8-dinitro-1H-[1,2,4]-

triazolo[3,4-*a***]isoindoles 10c.** Mp 276–277°C; ¹H NMR (DMSO-*d*₆, δ , *J* Hz): 3.93 (3H, s, OCH₃), 7.35 (2H, d, *J*=78.9 Hz, H_{arom}), 7.45–7.60 (5H, m, H_{arom}), 7.94 (2H, d, *J*=8.9 Hz, H_{arom}), 8.72 (1H, s, H_{arom}), 8.77 (1H, s, H_{arom}), 9.72 (1H, s, H_{arom}); ¹³C NMR (DMSO, δ): C, 183.3, 160.4, 140.6, 139.2, 138.3, 136.0, 133.6, 124.1, 107.3, 107.2; CH, 131.9, 129.0, 127.2, 125.3, 123.1, 121.0, 115.5; CH₃, 55.8; *m*/*z* (%): 496 (M+K, 15), 480 (M+Na, 100), 458 (M+1, 5), 295 (35), 36 (30); IR (KBr, cm⁻¹): 3123, 1602, 1511, 1455, 1287, 1167, 1078, 1050, 840, 732; Anal. Calcd for C₂₃H₁₅N₅O₆: C, 60.38; H, 3.31; N, 15.32; found: C, 60.09; H, 3.27; N, 15.06.

1-(4-Methoxyphenyl)-5-(4-methoxy)benzoyl-6,8-dinitro-1H-[1,2,4]triazolo[3,4-a]isoindoles 10d. Mp 273–274°C; ¹H NMR (DMSO- d_6 , δ , J Hz): 3.86 (3H, s, OCH₃), 3.96 (3H, s, OCH₃), 7.04 (2H, d, J=8.4 Hz, H_{arom}), 7.37 (2H, d, J=8.6 Hz, H_{arom}), 7.62 (2H, d, J=8.4 Hz, H_{arom}), 7.95 (2H, d, J=8.6 Hz, H_{arom}), 8.76 (1H, s, H_{arom}), 8.80 (1H, s, H_{arom}), 9.68 (1H, s, H_{arom}); ¹³C NMR (DMSO, δ): C, 182.4, 162.4, 160.4, 138.9, 138.0, 135.6, 133.5, 133.2, 123.4, 107.1, 106.7; CH, 129.5, 129.0, 125.2, 123.2, 120.9, 115.5, 114.3; CH₃, 55.8, 55.5; m/z (%): 525 (M+K, 30), 510 (M+Na, 100), 488 (M+1, 5), 295 (6+8), 36 (61); IR (KBr, cm⁻¹): 3097, 1589, 1560, 1510, 1303, 1258, 1164, 1078, 1021, 911, 833; Anal. Calcd for C₂₄H₁₇N₅O₇: C, 59.12; H, 3.52; N, 14.37; found: C, 58.86; H, 3.34; N, 14.28.

References

 (a) Tanaka, H. PCT Int. Appl. WO 9703986, 1996; Chem. Abstr. 1997, 120, 199585. (b) Tanaka, H. PCT Int. Appl. WO 9732948, 1996; Chem. Abstr. 1997, 127, 262702. (c) Galliani, G.; Cristina, T.; Guzzi, U.; Omodei-Sale, A.; Assandri, A. J. Pharmacobio-Dyn. 1982, 5, 55–61. (d) Wierzbicki, M. Eur. Pat. Appl. EP 199641, 1998; Chem. Abstr. 1987, 107, 23343. (e) Goldberg, M. Arch. Int. Pharmacodyn. Ther. 1970, 186, 287– 297. (f) Favara, D.; Omodei-Sale, A. Ger. Offen. 2942196, 1980; Chem. Abstr. 1980, 93, 186357. (g) Irikura, T. Ger. Offen. 2449270, 1975; Chem. Abstr. 1975, 83, 97308.

2. (a) Coutouli-Argyropoulo, E.; Malamidou-Xenikaki, E. J. Chem. Soc. Res. (S) **1991**, 106–107. (b) Aly, A. A.; Mourad, A. F. E. Pharmazie **1997**, 52, 23–28. (c) Galliani, G.; Cristina, T.; Guzzi, U.; Omodei-Sale, A.; Assandri, A. Rev. Drug Metab. Drug Interact. **1982**, 4, 237–261. (d) Albrechtsen, S. H. PCT Int. Appl. WO 9417068, 1994; Chem. Abstr. **1994**, *121*, 205364.

- 3. Kröhnke, F.; Schmeiss, H. Chem. Ber. 1937, 70, 172.
- 4. Reusching, D. B.; Kröhnke, F. Chem. Ber. 1971, 104, 2103.
- 5. Surpateanu, G.; Lablache-Combier, A. *Heterocycles* 1984, 22, 2079.

6. (a) Luchian, C.; Barboiu, V.; Surpateanu, G.; Petrovanu, M. *Bul. Inst. Polit. Iasi.* **1983**, *XXIX (XXXIII)*, 77, 52. (b) Couture, A.; Lablache-Combier, A.; Grandclaudon, P.; Surpateanu, G. *Heterocycles* **1990**, *31*(12), 2111. (c) Surpateanu, G.; Lablache-Combier, A.; Grandclaudon, P.; Couture, A.; Mouchel, B. *Rev. Roum. Chim.* **1993**, *38*(6), 671. (d) Karzazi, Y.; Surpateanu, G. *Heterocycles* **1999**, *4*, 51.

7. Kröhnke, F. Ber. Dtsch. Chem. Ges. 1935, 68, 1177.

8. Katritzky, A. R.; Kuzmierkiewicz, W.; Greenhill, J. V. Recl. Trav. Chim. Pays-Bas **1991**, 110, 369.

9. Zugravescu, I.; Rucinschi, E.; Surpateanu, G. Rev. Roum. Chem. 1971, 16 (7), 1099.